jueves, 14 de octubre de 2010




Dado un cuadrado naranja- polígono cuatro- se pide hacer un triángulo- en color verde- equivalente, esto es, que tenga la misma área.
Se dibuja un triángulo equilátero cualquiera, por ejemplo de color rosa- polígono uno-, se coge la mitad de la altura y por ese punto E trazamos una horizontal ME. Al trazar verticales por los puntos AB obtenemos con la línea anterior el rectángulo amarillo.
 Hacemos centro en A y con la distancia AB  dibujamos la circunferencia roja que corta a la vertical j en G.
Hacemos una semi circunferencia verde de diámetro GA, donde corta a la prolongación del lado del rectángulo ML, obtenemos el punto I.
AI  es el lado del cuadrado azul que es equivalente al triángulo rosa.
Hemos hecho el ejercicio al revés por ser más sencillo, partimos del triángulo. Ahora procedemos a resolverlo según el enunciado: en el ejercicio que hicimos vimos la relación que existe entre el triángulo equilátero y el cuadrado, como nos dan  el cuadrado naranja, transformamos el lado del cuadrado azul  m  en el lado del cuadrado naranja g1 dado, teniendo el centro de la homotecia N, que alineándolo con el vértice superior del triángulo -C- transforma la medida del lado AC en el lado rojo h1 del triángulo verde. En consecuencia el triángulo verde es equivalente al triángulo naranja.
Vídeo explicativo





El triángulo ABCD es equivalente al trapecio MNÑO. El romboide de la izquierda está formado por triángulo y trapecio que se transforma con una diagonal en otra figura igual mediante una simetría central. El trapecio ÑPCD es igual a la base del trapecio que acota el triángulo mayor.




Trapecio equivalente a rectángulo y a triángulo. Una forma fácil de hacer figuras semejantes es dividir los lados de la original en partes iguales, de esta forma es más fácil que encajen los trozos para formar con ellos figuras nuevas.


En la figura observamos una forma de componer figuras equivalentes: triangular formas polígonales y construir con ellas nuevas formas.
En verde, rombo, romboide, trapecio y rectángulo son equivalentes por estar compuestas de los mismos triángulos rectángulos. El rectángulo rojo más verde ofrece otra posibilidad, la de construir áreas de otras proporciones, como doble en este caso.





Una forma de construir figuras equivalentes es hacer particiones de la siguiente forma: el rectángulo de la izquierda lo vamos a transformar en un trapecio, para ello lo dividimos en cuatro partes de las que son iguales dos y otras dos entre sí. Esta división nos genera un trapecio gris +1 triángulo rojo que lo giramos hasta situarlo sobre la base menor del trapecio. Para que el triángulo rojo tenga la misma pendiente que el trapecio ha de tener los 2 catetos iguales. Desplazamos a continuación el rectángulo amarillo sobre el azul ya que su partición era equitativa.




En la figura 1, el trapecio y pentágono son equivalentes pues los triángulos ADN y DBA, y AGE y AME tienen la misma base y altura por lo que sus áreas son iguales. En la figura 2, pentágono y triángulo son equivalentes por la misma razón.

No hay comentarios:

Publicar un comentario